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This paper investigates the consensus problem for a team of agents with inconsistent
information, which is a core component for many proposed distributed planning schemes.
Kalman filtering approaches to the consensus problem have been proposed, and they are
shown to converge for strongly connected networks. It is demonstrated in this paper, however,
that these previous techniques can result in biased estimates that deviate from the centralized
solution, if it had been computed. An extension to the basic algorithm is presented to ensure
the Kalman filter converges to an unbiased estimate. The proof of convergence for this new
distributed Kalman Consensus algorithm to the unbiased estimate is then provided for both
static and dynamic communication networks. These results are demonstrated in simulation
using several examples for different network structures.

I. Introduction

COORDINATED planning for a group of agents has been given significant attention in recent research [1–7]. This
includes work on various planning architectures, such as distributed [1,5], hierarchic [3,4], and centralized [2,6,7].

In a centralized planning scheme, all of the agents communicate with a central agent to report their information and
new measurements. The central planner gathers this available information to produce coordinated plans for all agents,
which are then redistributed to the team. Note that generating a coordinated plan using a centralized approach can
be computationally intensive, but otherwise it is relatively straightforward because the central planner has access to
all information. This approach is often not practical, however, owing to communication limits, robustness issues,
and poor scalability [1,5]. Thus attention has also focused on distributed planning approaches, but this process
is complicated by the extent to which the agents must share their information to develop coordinated plans. This
complexity can be a result of dynamic or risky environments or strong coupling between tasks, such as tight timing
constraints. One proposed approach to coordinated distributed planning is to have the agents share their information
to reach consensus and then plan independently [5].

Several different algorithms have been developed in the literature for agents to reach consensus [8–16] for a
wide range of static and dynamic communication structures. In particular, a recent paper by Ren et al. [15] uses the
well-known Kalman filtering approach to develop the Kalman consensus algorithm (KCA) for both continuous and
discrete updates and presents numerical examples and analytical proofs to show their convergence.

The objective of this paper is to extend the algorithm developed by Ren et al. [15] not only to ensure its convergence
for the general form of communication networks, but also to ensure that the algorithm converges to the desired value.
In the KCA the desired value is the value that is achieved if a centralized Kalman filter was applied to the initial
information of the agents. We show, both by simulation and analytical proofs, that the new extended algorithm always
converges to the desired value.
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The main contribution of this paper is developing a KCA that gives an unbiased estimate of the desired value for
static and dynamic communication networks. The proof of convergence of the new unbiased decentralized kalman
consensus (UDKC) algorithm to this unbiased estimate is then provided for both static and dynamic communication
networks. As the desired value in Kalman consensus is essentially a weighted average of the initial information
of the agents, the proposed algorithm can also be used to achieve a general weighted average for the very general
form of communication networks. Previous research has shown that the weighted average can only be achieved for
the special case of strongly connected balanced networks. Another contribution of this paper is showing that these
constraints on the network can be relaxed and the proposed algorithm still reaches the desired weighted average.

Section II provides some background on the consensus problem and Sec. III formulates the KCA and discusses
the convergence properties. The new extension to the KCA is formulated in Sec. IV and more examples are given
to show its convergence to an unbiased estimate. Finally, the proof of convergence to an unbiased estimate for static
and dynamic communication structure is given.

II. Consensus Problem
This section presents the consensus problem statement and discusses some common algorithms for this problem

[8–16].

A. Problem Statement
Suppose there are n agents A = {A1, . . . ,An} with inconsistent information and let xi be the information asso-

ciated with agent i. The objective is for the agents to communicate this information among themselves to reach
consensus, which means that all of the agents have the same information (xi = xj , ∀i, j ∈ {1, . . . , n}).

To simplify the notation in this paper, we assume that the information is a scalar value, but the results can be easily
extended to the case of a vector of information.

The communication pattern at any time t can be described in terms of a directed graph G(t) = (A, E(t)), where
(Ai , Aj ) ∈ E(t) if and only if there is a unidirectional information exchange link from Ai to Aj at time t . Here we
assume that there is a link from each agent to itself, (Ai , Ai ) ∈ E(t), ∀ i, t . The adjacency matrix G(t) = [gij (t)] of
a graph G(t) is defined as

gij (t) =
{

1 if (Aj , Ai ) ∈ E(t)

0 if (Aj , Ai ) /∈ E(t)
(1)

and a directed path from Ai to Aj is a sequence of ordered links (edges) in E of the form
(Ai , Ai1), (Ai1 , Ai2), . . . , (Air , Aj ). A directed graph G is called strongly connected if there is a directed path
from any node to all other nodes [17] and a balanced network is defined as a network where for any node Ai , its
outflow equals its inflow.

B. Consensus Algorithm
If the information, xi of agent Ai , is updated in discrete time steps using the data communicated from the other

agents, then the update law can be written as

xi(t + 1) = xi(t) +
N∑

j=1

αij (t)gij (t)(xj (t) − xi(t)) (2)

where αij (t) � 0 represents the relative effect of information of agent Aj on the information of agent Ai . The
parameter αij (t) can be interpreted as the relative confidence that agent Ai and Aj have that their information
variables are correct [8]. Equation (2) can also be written in matrix form as x(t + 1) = A(t)x(t), where x(t) =
[x1(t), . . . , xn(t)]T , and the n × n matrix A(t) = [aij (t)] is given by

aij (t)

{
� 0 if gij (t) = 1
= 0 if gij (t) = 0

(3)

Several methods such as fixed coefficients, Vicsek model, gossip algorithm, and Kalman filtering have been proposed
to pick values for the matrix A [9,15]. In the Kalman filtering approach, the coefficients, aij , are chosen to account for
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the uncertainty each agent has in its information. Section A summarizes the Kalman filter formulation of consensus
problem from Ren et al. [15]. Simulations are then presented to show that the performance of this algorithm strongly
depends on the structure of the communication network. An extension to this algorithm is proposed in Sec. IV that
is shown to work for more general communication networks.

III. Kalman Consensus Formulation
This section provides a brief summary of work presented by Ren et al. [15], which uses Kalman filtering concepts

to formulate the consensus problem for a multi-agent system with static information.

A. Kalman Consensus
Suppose at time t , xi(t) represents the information (perception) of agent Ai about a parameter with the true

value x∗. This constant true value is modeled as the state, x∗(t), of a system with trivial dynamics and a zero-mean
disturbance input w ∼ (0, Q)

x∗(t + 1) = x∗(t) + w(t)

The measurements for agents Ai at time t are the information that it receives from other agents

zi(t) =
⎡
⎢⎣

gi1(t)x1(t)
...

gin(t)xn(t)

⎤
⎥⎦ (4)

where gij (t) = 1 if there is a communication link at time t from agent Aj to Ai , and 0 otherwise. Assuming that
the agents’ initial estimation errors, (xi(0) − x∗), are uncorrelated, E[(xi(0) − x∗)(xj (0) − x∗)T ] = 0, i �= j and by
defining

Pi(0) = E[(xi(0) − x∗)(xi(0) − x∗)T ]
then the discrete-time KCA for agent i can be written as [15]

Pi(t + 1) =
⎧⎨
⎩[Pi(t) + Q(t)]−1 +

n∑
j=1,j �=i

gij (t)
[
Pj (t)

]−1

⎫⎬
⎭

−1

(5)

xi(t + 1) = xi(t) + Pi(t + 1)

n∑
j=1,j �=i

{
gij (t)

[
Pj (t)

]−1 [
xj (t) − xi(t)

]}

As it is assumed that gii = 1, then to make the formulation similar to the one in [15], i is excluded from the summations
(j �= i) in the above equations. Equation (5) is applied recursively until all the agents converge in their information or,
equivalently, consensus is reached (t = 1, . . . , Tconsensus). Note that, although Pi(0) represents the initial covariance
of xi(0), the values Pi(t); t > 0 need not have the same interpretation; they are just weights used in the algorithm
that are modified using the covariance update procedure of the Kalman filter.

Reference [15] shows that under certain conditions the proposed KCA converges and the converged value is
based on the confidence of each agent about the information. The following sections analyze the performance of this
algorithm for different network structures and modifications are proposed to improve the convergence properties.

B. Centralized Kalman Consensus
The centralized Kalman estimator for the consensus problem is formulated in this section to be used as a benchmark

to evaluate different distributed algorithms. As the centralized solution is achieved in one iteration (Tconsensus = 1)
and the decentralized solution is solved over multiple iterations (Tconsensus > 1), some assumptions are necessary
to enable a comparison between the two algorithms. In particular, as the process noise is added in each iteration
and the centralized solution is done in one step, consistent comparisons can only be done if the process noise is
zero (w(t) = 0; ∀ t). These assumptions are made solely to enable a comparison of different algorithms with the
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benchmark (centralized), and they do not impose any limitations on the algorithm that will be developed in the next
sections. Under these assumptions, the centralized solution using the Kalman filter is

P̄ =
{

n∑
i=1

[Pi(0)]−1

}−1

(6)

x̄ = P̄

n∑
i=1

{
[Pi(0)]−1 xi(0)

}
C. Example

The meet-for-dinner example [15] is used in the current paper as a benchmark to compare the performance
(accuracy) of different algorithms. In this problem, a group of friends decide to meet for dinner, but fail to specify a
precise time to meet. On the afternoon of the dinner appointment, each individual realizes that he is uncertain about
the time of dinner. A centralized solution to this problem is to have a conference call and decide on the time by
some kind of averaging on their preferences. As the conference call is not always possible, a decentralized solution is
required. In the decentralized solution, individuals contact each other (call, leave messages) and iterate to converge to
a time (reach consensus). Here the KCA from Sec. A is used to solve this problem for n = 10 agents. Figure 1 shows
the output of this algorithm for the two cases presented in [15], demonstrating that the results obtained are consistent.
These simulations use a special case of a balanced communication network in which each agent communicates with
exactly one other agent so that

Inflow(Ai ) = Outflow(Ai ) = 1, ∀ Ai ∈ A (7)

where Inflow(Ai) is the number of links of the form (Aj , Ai ) ∈ E and Outflow(Ai) is the number of links of the
form (Ai , Aj ) ∈ E .

In Fig. 1a, the initial states and the initial variances are uniformly assigned (case 1). In Fig. 1b, the variance of the
agent with initial data xi(0) = 7 (leader) is given an initial variance of Pi(0) = 0.001, which is significantly lower
than the other agents and therefore has more weight on the final estimate (case 2). To evaluate the performance of
this algorithm, the results are compared to the true estimate, x̄, calculated from the centralized algorithm in Eq. (6).
The results in Table 1 clearly show that the solution to the decentralized algorithm in Eq. (5) is identical to the true
centralized estimate.

As noted, these cases assume the special case of the communication networks in Eq. (7). To investigate the
performance of the decentralized algorithm in more general cases, similar examples were used with slightly different
communication networks. The graphs associated with these new architectures are still strongly connected, but the
assumption in Eq. (7) is relaxed. This is accomplished using the original graphs of cases 1 and 2 with four extra

Time steps Time steps

Fig. 1 The result of KCA for cases 1 and 2, demonstrating consistency with the results in [15]: a) no Leader; b)
Leader.
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Table 1 Comparing the results of different algorithms

Algorithm Case 1 Case 2 Case 3 Case 4

Centralized 6.0433 6.9142 6.0433 6.9142
Kalman consensus 6.0433 6.9142 5.6598 6.2516
UDKC 6.0433 6.9142 6.0433 6.9142

links added to the original graph. The results are presented in Table 1 (cases 3, 4). For these cases, the solution of
the decentralized algorithm of Eq. (5) deviates from the true estimate, x̄, obtained from the centralized solution. The
KCA always converges to a value that respects the certainty of each agent about the information, but these results
show that in cases for which the network does not satisfy the condition of Eq. (7), the consensus value can be biased
and deviate from the centralized solution.

The next section extends this algorithm to eliminate this bias and to guarantee convergence to the true centralized
estimate, x̄, for the general case of communication networks.

IV. Unbiased Decentralized Kalman Consensus
This section extends the Kalman consensus formulation of Eq. (5) to achieve the desired unbiased solution, which

is the solution to the centralized algorithm presented in Eq. (6). The new extended algorithm generates the true
centralized estimate, x̄, using a decentralized estimator for any form of communication networks.

The main idea is to scale the accuracy of the agents by their outflow, which gives the UDKC algorithm. For agent
Ai at time t + 1, the solution is given by

Pi(t + 1) =
⎧⎨
⎩[Pi(t) + Q(t)]−1 +

n∑
j=1

(
gij (t)

[
μj(t)Pj (t)

]−1
)⎫⎬
⎭

−1

(8)

xi(t + 1) = xi(t) + Pi(t + 1)

n∑
j=1

{
gij (t)

[
μj(t)Pj (t)

]−1 [
xj (t) − xi(t)

]}

where μj(t) is the scaling factor associated with agent Aj and

μj(t) =
n∑

k=1, k �=j

gkj (t) (9)

To show the unbiased convergence of the UDKC algorithm, the four cases of the meet-for-dinner problem in
Sec. C were resolved using this new approach. The results for the four cases are presented in Table 1. As shown,
in all four cases the UDKC algorithm converges to the true estimates (the results of the centralized algorithm). The
following remarks provide further details on the UDKC algorithm.

1) Both the original KCA and new UDKC formulations presented here differ from the previously developed
weighted average consensus algorithms [18] in the sense that these algorithms not only update the information
in each iteration, but also update the weights (P s) that are used in the formulation. This additional update
(Eqs. (5) and (8)) enables the UDKC algorithm to converge to the desired weighted average for a very general
class of communication networks, while the previous form of consensus algorithm (Eq. (2)), where only
the information itself is updated at each iteration [18], was limited to a special kind of strongly connected
balanced network.

2) Reference [18] introduces an alternative form of the consensus algorithm that has some apparent similarities
to the UDKC formulation introduced in this paper. The form of the consensus algorithm in [18] is as follows

ẋi = 1

|Ni |
∑
j∈Ni

(xj − xi) (10)
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where Ni = {j ∈ A : (i, j) ∈ E} is the list of neighbors of agent Ai . Note that in the notation of [18], if
(i, j) ∈ E then there is a link from Ai to Aj but the information flow is from Aj to Ai . Therefore, although
|Ni | is defined as the outdegree of agent Ai , it is essentially the inflow of agent Ai in our formulation. Thus
the consensus formulation of Eq. (10) has a scaling factor that is equal to the inflow of the receiving agent, Ai .
Note however, that the scaling factor in the UDKC algorithm (the coefficient μ in Eq. (8)) is the outflow of
the sending agent, Aj . This clarifies the key differences between UDKC and the method introduced in [18].

3) The scaling introduced in UDKC (the coefficient μ in Eq. (8)) does not change the topology of the network
to make it a balanced network. The implicit effect of μ is essentially making the outflows of all agents
equal to 1 and has no effect on the inflow of the agents. Thus the resulting network will not necessarily
be a balanced network and therefore the results presented in [11] and [18] for balanced networks can
not be used to prove the convergence of the UDKC algorithm to the desired weighted average. Figure 2
shows a simple network that is neither balanced (Inflow(1) = 1, Outflow(1) = 2) nor are its outflows equal
(Outflow(1) = 2, Outflow(2) = 1). The adjacency matrix for this network is⎡

⎣ 0 0 1
1 0 0
1 1 0

⎤
⎦ (11)

and applying the scaling μ defined in Eq. (9) gives⎡
⎣ 0 0 1

0.5 0 0
0.5 1 0

⎤
⎦ (12)

which has the same outflow for all the nodes, but is still imbalanced (Inflow(2) = 0.5, Outflow(2) = 1).
To show why the outflow scaling results in convergence to the desired solution, a simple example is presented

here. Based on the Kalman filter, the relative weights given to each estimate should be relative to the accuracy of the
estimates, Pis (see Eq. (6)). The formulation in Eq. (5) uses the same idea, but these weights are further scaled by the
outflow of the agents. This means that if agent Ai and Aj have exactly the same accuracy, Pi = Pj , but in addition
the outflow of agent Ai is greater than the outflow of agent Aj , then using Eq. (5) causes the information of agent
Ai to be treated as if it is more accurate than information of Aj (or the effective value of Pi is less than Pj ), which
creates a bias in the converged estimate. Obviously, for the special balanced networks considered in the simulations
of [15], this bias does not occur as the outflows are all equal to one.

Figure 3 presents a simple example to illustrate the problem with the KCA of Eq. (5). There are three agents with
[x1(0) x2(0) x3(0)] = [ 4 5 6 ] and (Pi(0) = 1, i ∈ {1, 2, 3}). As shown in the figure, the outflows of agents 2
and 3 are both one, but it is two for agent 1. As all agents have the same initial accuracy, the centralized solution is
the average of the initial estimates, x̄ = 5. Figure 3 shows four steps of the KCA for this example. At time t = 3,
all of the estimates are less than 5, and the final converged estimate is 4.89, which is different from the centralized

Fig. 2 A simple imbalanced network with unequal outflows.
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Fig. 3 An example to show the bias of the decentralized KCA, xi(t) and Pi(t) are the estimate and its accuracy of
agent Ai at time t.

estimate. Note also that the deviation of the final value from the correct estimate is towards the initial value of agent
1, which has the largest outflow. This bias is essentially the result of an imbalanced network in which information of
agents with different outflows is accounted for in the estimation with different weights. To eliminate the bias, weights
should be modified to cancel the effect of different outflows, which is essentially the modification that is introduced
in Eq. (8).

The following sections present the proof of convergence of the UDKC algorithm to the true centralized estimate.

A. Information Form of UDKC
The information form of Kalman filtering is used to prove that the UDKC algorithm converges to the true

centralized estimate, x̄, in Eq. (6). The information filter is an equivalent form of the Kalman filter that simplifies the
measurement update, but complicates the propagation [19]. It is typically used in systems with a large measurement
vector, such as sensor fusion problems [20,21]. As the propagation part of the Kalman filter is absent (or very simple)
in the consensus problem, the information form of the filter also simplifies the formulation of that problem. The
following briefly presents the information form of the Kalman consensus problem. To be consistent with the example
in Sec. C, it is assumed that the process noise is zero. To write the UDKC (8) in the information form, for agent Ai

define

Yi(t) ≡ Pi(t)
−1 and yi(t) ≡ Yi(t)xi(t) (13)

then, Eq. (8) can be written as

Yi(t + 1) = 1

2

⎧⎨
⎩Yi(t) +

n∑
j=1,j �=i

gij (t)

μj (t)
Yj (t)

⎫⎬
⎭ (14)

yi(t + 1) = 1

2

⎧⎨
⎩yi(t) +

n∑
j=1,j �=i

gij (t)

μj (t)
yj (t)

⎫⎬
⎭ (15)

and after each iteration (time t), for agent Ai

xi(t) = Yi(t)
−1yi(t) (16)
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Note that the expressions in Eq. (15) are scaled by a factor of 1/2, which has no effect on the estimation, but simplifies
later proofs. These equations can be written in matrix form

Y(t + 1) = �(t)Y(t) (17)

y(t + 1) = �(t)y(t) (18)

where Y(t) = [Y1(t), . . . , Yn(t)]T , y(t) = [y1(t), . . . , yn(t)]T and �(t) = [ψij (t)] with

ψij (t) =

⎧⎪⎨
⎪⎩

1

2
if j = i

gij (t)

2μj(t)
if j �= i

(19)

A comparison of the simple linear update in Eqs. (17) and (18) with the nonlinear updates of the Kalman filter
Eq. (8) shows the simplicity of this information form for the consensus problem. Note that since agents iterate on
communicating and updating their information before using it, the inversions in Eqs. (13) and (16) do not need to be
performed every iteration. At the beginning of the consensus process, each agent Ai transforms its initial information,
xi(0), and associated accuracy, Pi(0), to yi(0) and Yi(0) using Eq. (13). In each following iteration, the transformed
values (yi(t), Yi(t)) are communicated to other agents and are used in the update process of Eq. (15). At the end of
the consensus process the state xi(Tconsensus) can be extracted from yi(Tconsensus) and Yi(Tconsensus) using Eq. (16).

B. Proof of Unbiased Convergence
This section provides the results necessary to support the proof of convergence of the UDKC algorithm to an

unbiased estimate in the absence of noise.

Definition 1 [22].
A nonnegative matrix A = [aij ] ∈ C

n×n is called row stochastic if
∑n

j=1 aij = 1, 1 � i � n and it is called column
stochastic if

∑n
i=1 aij = 1, 1 � j � n. Note that if A is a row stochastic matrix, AT is a column stochastic matrix.

Theorem 1 [22].
If we denote by e ∈ R

n the vector with all components +1, a nonnegative matrix A is row stochastic if and only if
Ae = e.

Lemma 1.
The matrix �(t) = [ψij (t)] defined in Eq. (19) is column stochastic.

Proof.
For any column j

n∑
i=1

ψij (t) = 1

2

⎛
⎝1 +

n∑
i=1,i �=j

gij (t)

μj (t)

⎞
⎠ = 1

2

⎛
⎝1 + 1

μj(t)

n∑
i=1,i �=j

gij (t)

⎞
⎠ (20)

Thus using Eq. (9)
n∑

i=1

ψij (t) = 1

2

(
1 + 1

μj(t)
μj (t)

)
= 1 (21)

so � is column stochastic.

Lemma 2.
The directed graph associated with matrix � = [ψij ] defined in Eq. (19), is strongly connected.
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Proof.
By definition (19), ψij > 0 if gij > 0 and ψij = 0 if gij = 0 and therefore matrices � = [ψij ] and G = [gij ] are
both adjacency matrices to the same graph, which was assumed to be strongly connected.

Theorem 2 [23].
For any A = [aij ] ∈ C

n×n, A is irreducible if and only if its directed graph G(A) is strongly connected.

Theorem 3 (Perron–Frobenius Theorem [23]).
Given any A = [aij ] ∈ R

n×n, with A � 0 and with A irreducible, then
1) A has a positive real eigenvalue equal to its spectral radius ρ(A);
2) to ρ(A) there corresponds an eigenvector v = [v1, v2, . . . , vn]T 	 0;
3) ρ(A) is a simple eigenvalue of A.

Theorem 4 (Geršgorin [24]).
Let A = [aij ] ∈ C

n×n, and let

Ri(A) ≡
n∑

j=1,j �=i

|aij |, 1 � i � n (22)

denote the “deleted absolute row sums” of A. Then all the eigenvalues of A are located in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii | � Ri(A)}

Definition 2.
A nonnegative matrix A ∈ C

n×n is said to be “primitive” if it is irreducible and has only one eigenvalue of maximum
modulus.

Theorem 5 [24].
If A ∈ C

n×n is nonnegative and primitive, then

lim
m→∞[ρ(A)−1A]m = L 	 0

where L = vuT , Av = ρ(A)v, AT u = ρ(A)u, v 	 0, u 	 0, and vT u = 1.

Lemma 3.
For the matrix � = [ψij ] defined in Eq. (19),

lim
m→∞ �m = veT 	 0

where v is a column vector and for the matrix C, C 	 0 means that cij > 0 ∀i, j .

Proof.
By definition � � 0 (ψij � 0), and the directed graph associated with it is strongly connected (Lemma 2), so from
Theorem 2, � is irreducible. Thus � has a simple eigenvalue equal to ρ(�) (Theorem 3).

Furthermore, � is column stochastic (Lemma 1) and by definition � has an eigenvalue λ1 = 1 (Theorem 1).
Using the Geršgorin Theorem (Theorem 4), all of the eigenvalues of the row-stochastic matrix �T are located in the
union of n disks

n⋃
i=1

{z ∈ C : |z − ψii | � Ri(�
T )}

Using Eq. (19), ψii = 0.5, ∀i, and Ri(�
T ) = 0.5 (see Eq. (22)), and thus all the eigenvalues of �T and � are

located in the disc {z ∈ C : |z − 0.5| � 0.5}. Consequently all the eigenvalues of � satisfy |λi | � 1, ∀i, and hence
ρ(�) � 1.
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As λ1 = 1, therefore λ1 = ρ(�) = 1. As a result � has only one eigenvalue of maximum modulus and therefore
is primitive (see Definition 2). Finally, using Theorem 5,

lim
m→∞[ρ(�)−1�]m = L 	 0

where L = vuT , �v = ρ(�)v, �T u = ρ(�)u, v 	 0, u 	 0, and vT u = 1. However, as ρ(�) = 1, and using
Theorem 1, u = e, then it follows that limm→∞ �m = veT 	 0.

With these results, we can now state the main result of the paper.

Theorem 6.
For any strongly connected, time-invariant communication network, G, and for any agent Ai and any initial estimate,
xi(0), and variance, Pi(0), the estimate, xi(t), resulting from the modified distributed Kalman consensus algorithm
introduced in Eq. (8) and (15), converges to the true centralized estimate, x̄, calculated using Eq. (6), or equivalently,

lim
t→∞ xi(t) → x̄ ∀i ∈ {1, . . . , n} (23)

Proof.
The objective is to show that Eq. (23) is satisfied or equivalently, limt→∞ x(t) → x̄e, where x = [x1, . . . , xn]T .
Let v† denote the element inverse of a vector, v† = [v−1

1 , . . . , v−1
n ]T . Using Eq. (16) it follows that limt→∞ x(t) =

limt→∞ Y†(t) � y(t), where the operator � represents the element by element multiplication. With the assumed
time-invariance of the communication network, �(t) = �, and using Eqs. (17) and (18)

lim
t→∞ x(t) = lim

t→∞
(
�tY(0)

)† � (
�ty(0)

)
Using Lemma 3

lim
t→∞ x(t) =

⎛
⎝v eT Y(0)︸ ︷︷ ︸

scalar

⎞
⎠†

�
⎛
⎝v eT y(0)︸ ︷︷ ︸

scalar

⎞
⎠

= (
eT Y(0)

)−1 (
v† � v

) (
eT y(0)

)
As vT e 	 0 (Lemma 3), v 	 0, therefore, v† � v = e and

lim
t→∞ x(t) = (

eT Y(0)
)−1 (

eT y(0)
)

e

=
{

n∑
i=1

Yi(0)

}−1 { n∑
i=1

yi(0)

}
e

Using the relationship Yi(0) = Pi(0)−1, it follows that

lim
t→∞ x(t) =

{
n∑

i=1

Pi(0)−1

}−1 { n∑
i=1

Pi(0)−1xi(0)

}
e

and then from Eq. (6), limt→∞ x(t) = x̄e. Thus the UDKC algorithm introduced in Eq. (8) converges to the true
centralized estimate, x̄, when the strongly connected communication network is time-invariant.

In what follows we prove that the same is true for a time-varying communication network.
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Definition 3 [25].
A stochastic matrix A is called indecomposable and aperiodic (SIA) if

L = lim
m→∞ Am

exists and all the rows of L are the same. Define δ(A) by

δ(A) = max
j

max
i,k

|aij − akj |

Note that if the rows of A are identical, δ(A) = 0, and vice versa.

Definition 4.
Let A1, . . . , Ak ∈ C

n×n. By a word in Ais of the length t we mean the product of t Ais with repetition permitted.

Theorem 7 [25].
Let A1, . . . , Ak be square row-stochastic matrices of the same order such that any word in the Ais is SIA. For any
ε > 0 there exists an integer ν(ε) such that any word B (in the As) of length m � ν(ε) satisfies δ(B) < ε.

In other words, the result is that any sufficiently long word in the Ais has all its rows the same or,
limm→∞ A1A2 . . . Am = evT .

Lemma 4.
If matrices A1, . . . , AN ∈ R

n×n, ∀i, Ai � 0 have strictly positive diagonal elements, then matrix C = A1A2 . . . AN

has the same properties (C � 0 and all diagonal elements of C are strictly positive).

Proof.
To establish this result, it will first be shown that if matrices A, B � 0 have strictly positive diagonal elements then
D = AB has the same properties. Given that D = AB, then

dij =
n∑

k=1

aikbkj︸ ︷︷ ︸
�0

� 0

dii =
n∑

k=1

aikbki = aiibii︸ ︷︷ ︸
>0

+
n∑

k=1,k �=i

aikbki︸ ︷︷ ︸
�0

> 0

which provides the necessary result. Therefore by induction, C = A1, . . . , AN � 0 and all diagonal elements of C

are strictly positive.

Theorem 8.
Let G be any dynamic communication network, where at each time step, G(t) is strongly connected. Then for
any agent Ai and any initial estimate, xi(0), and variance, Pi(0), the estimate, xi(t), resulting from the modified
distributed Kalman consensus algorithm, introduced in Eqs. (8) and (15), converges to the true centralized estimate,
x̄, calculated using Eq. (6).

Proof.
From Lemma 3, for any t , limm→∞(�T (t))m = evT

t , where the vt is a column vector. Using Eq. (19) and Lemma 1,
�T (t) is row stochastic, so for any t , �T (t) is SIA (see Definition 3). Then from Theorem 7

lim
t→∞ �T (1)�T (2) . . . �T (t) = evT
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for some v, or equivalently,

lim
t→∞ �(t)�(t − 1) . . . �(2)�(1) = veT (24)

Thus if it can be shown that v 	 0, then the proof of Theorem 8 would follow the same steps as the proof for the
time-invariant case in Theorem 6. To demonstrate that v 	 0, we first show that the diagonal elements of

L = lim
t→∞ �T (1)�T (2) . . . �T (t) (25)

are positive (Lii > 0, ∀i). As, by its definition in Eq. (19), �(t) � 0 and all the diagonal elements of �(t) are strictly
positive, then C = �T (1)�T (2) . . . �T (t) and consequently L in Eq. (25) have positive elements, Lij � 0, ∀i, j ,
and strictly positive diagonal elements, Lii > 0, ∀i, (see Lemma 4).

Also, as L = evT (see Eqs. (24) and (25)), then all of the rows of L are equal (Lji = Lii , ∀i, j ). Furthermore,
since Lii > 0, ∀i then Lji > 0, ∀i, j , which implies that L = evT 	 0 and that v 	 0. The remainder of the proof
then follows the same steps as the proof for the time-invariant case in Theorem 6.

C. Convergence Proof for General Network Structure
In this section the UDKC is extended to be applied to the general communication networks, which means the

strong connectivity assumption is relaxed and more general assumptions are made.

Assumption 1.
There exists a positive constant α such that:

(a) aii(t) � α, ∀i, t ,
(b) aij (t) ∈ {0} ∪ [α, 1], ∀i, j, t ,
(c)

∑n
j=1 aij (t) = 1, ∀i, t .

Assumption 2 (connectivity).
The graph (N,

⋃
s�t E(s)) is strongly connected. This assumption says that the union of the graphs from anytime to

infinity is strongly connected, which means that when all the future networks are overlapped, then there is a directed
graph from any node to any other node.

Assumption 3 (bounded intercommunication interval).
If i communicates to j an infinite number of times, then there is some B such that, for all t , (i, j) ∈ E(t) ∪ E(t + 1)

∪ · · · ∪ E(t + B − 1).

Theorem 9.
Consider an infinite sequence of stochastic matrices A(0), A(1), . . ., that satisfies Assumptions 1, 2, and 3. There
exists a nonnegative vector v such that

lim
t→∞ A(t)A(t − 1)A(t − 2) . . . A(1)A(0) = evT

Proof.
See the proof in [9].

Theorem 10.
Let G be any dynamic communication network that satisfies Assumptions 2 and 3. Then for any agent Ai and any
initial estimate, xi(0), and variance, Pi(0), the estimate, xi(t), resulting from the UDKC algorithm, introduced in
Eqs. (8) and (15), converges to the true centralized estimate, x̄, calculated using Eq. (6).

Proof.
By construction �T (t) has the properties of Assumption 1:

(a) ψii(t) � α, ∀i, t .
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(b) ψij (t) ∈ {0} ∪ [α, 1], ∀i, j, t .
(c)

∑n
i=1 ψij (t) = 1, ∀j, t .

Therefore all the assumption of Theorem 9 are satisfied and therefore

lim
t→∞ �T (1)�T (2)�T (3) . . . �T (t) = evT

and therefore

lim
t→∞ �(t)�(t − 1)�(t − 2) . . . �(1) = veT

The rest of the proof follows the proof of Theorem 6.

V. Conclusions
The performance of the KCA was investigated for a team of agents with static data. It was shown that, although

this algorithm converges for the general case of strongly connected communication networks, it can result in a biased
estimate when the outflow of the agents is not equal. An extension to this algorithm was then presented which
was shown in simulations to converge to the true centralized estimate for general strongly connected networks.
This algorithm was further proved to converge to an unbiased estimate for both static and dynamic communication
networks.
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